St. Xavier's College (Autonomous), Ahmedabad Syllabus of Semester – II of the following departments under Faculty of Science based on Under Graduate Curriculum Framework – 2023 (NEP) to be implemented from the Academic Year 2023-24.

FACULTY OF SCIENCE

DEPARTMENT OF STATISTICS

Course	Title	Content	Hours/Week	Credit
DSC-1	Probability	U-1: Probability	4 hrs	4
(Theory)	Theory – 1	U-2: Random variable and mathematical expectationU-3: Generating functionU-4: Function of random variables		
DSC-1 (Lab)	Statistics Practical-II	Practical using manual calculation and Excel and Experimental learning	8 hrs	4

BSc. (Hons.) Statistics

DSC-1(Theory) Probability Theory-1

CREDIT DISTRIBUTION, ELIGIBILITY AND PRE-REQUISITES OF THE COURSE

Course Title &	Credit I	Prerequisite(s) of			
Code	Lecture	Practical	Experiential Lab	the Course (if any)	
Probability Theory-1	4	0	0	Basic Mathematics, Observation & Analytical Skills	

Course Outcomes:

- CO-1 Demonstrate the skill of identifying/designing the random experiments and their sample spaces. Apply ideas of probability theory, conditional probability, Bayes' theorem in real life situations.
- CO-2 Apply the idea of random variables and their expected values to study the behavior of random phenomenon occurring in business, industry and daily life activities.
- CO-3 Demonstrate the skill of finding generating functions such as probability generating function, moment generating function, cumulant generating function and factorial moment generating functions of different probability distributions.
- CO-4 Demonstrate the skill of finding function of random variables and finding their sums, products and ratio.

Learning Outcomes: After completion of this course, the students will be able to

- (1) Distinguish between random and non-random experiments
- (2) Identify Random variable and their mathematical expectation
- (3) Calculate the probabilities of events
- (4) Enumerate Generating function and Function of Random variable

Unit: 1 Probability

- Random experiments, trials, discrete and continuous sample space
- Events and their types.
- Axiomatic approach to probability and its properties.
- Theorems on probability.
- Definitions of equally likely cases, exhaustive cases, favourable cases.
- Classical and Empirical approach to probability.
- Conditional probability and its properties, Independence of two events, Pair wise and mutual independence for three events.
- Theorem on total probability.
- Bayes' theorem and its applications.

Unit: 2 Random variable and mathematical expectation

- Random variable and its types (Discrete and Continuous).
- Probability mass function, probability density function and distribution function.
- Properties of distribution function and theorems.
- Mathematical Expectation and its basic properties.
- Theorems on Mathematical Expectation.
- Raw and Central Moments and their recurrence relation.

Unit: 3 Generating Functions

- Probability Generating Function (p.g.f.).
- Moment generating function (m.g.f.) about origin and mean.
- Cumulant Generating Function (c.g.f.).
- Factorial moment generating function.
- Properties and uses of above topics.

Unit: 4 Functions of random variables

- Introduction
- Distribution Function Technique
- Basic idea and concept of Jacobian of transformation in derivation of distribution of function of random variable.
- Use of Jacobian in transformation of random variable
- Moment -Generating Function technique.
- General form of sum, product, ratio of two independent random variables.

(20Hrs)

(10Hrs)

(20 Hrs)

(10Hrs)

References:

- 1. Agresti, A. (2010): Analysis of Ordinal Categorical Data, 2nd Edition, Wiley.
- 2. Anderson T.W. and Jeremy D. Finn (1996). "The New Statistical Analysis of Data", Springer.
- Freedman, D., Pisani. R and Purves. R. (2014), "Statistics",4th Edition, W. W. Norton & Company.
- 4. Gupta, S.C. (2018), "Fundamental of Statistics", Himalaya Publishing House, 7th Edition.
- 5. Gupta S.C. and V.K. Kapoor (2020), "Fundamental of Mathematical Statistics", Sultan Chand and Co. 12th Edition.
- Goon A.M., Gupta M.K. and Dasgupta B. (2002): "Fundamentals of Statistics", Vol. I & II, 8th Edn. The World Press, Kolkata.
- 7. John E. Freund's "Mathematical Statistics with Applications", (7th Edn.), Pearson Education, Asia.
- 8. Mood, A.M. Graybill, F.A. and Boes, D.C. (2007): "Introduction to the Theory of Statistics", 3rd Edn., (Reprint), Tata McGraw-Hill Pub. Co. Ltd.

Suggested Online Links/Readings:

- https://<u>swayam.gov.in/explorer?searchText=statistics</u>
- https://<u>nptel.ac.in/course.html</u>
- https://<u>www.edx.org/search?q=statistics</u>
- https://www.coursera.org/search?query=statistics&

Pedagogy:

- 1. The course is taught using traditional chalk and talk method using problem solving through examples and exercises.
- 2. Students are encouraged to use resources available on open sources.

MODE OF EVALUATION

Evaluation will be divided in two parts.

- **Internal:** 50 marks (will be decided by the college)
- **External:** 50 marks (will be conducted by college)

DSC-1 (Lab) Statistics Practical-II

CREDIT DISTRIBUTION, ELIGIBILITY AND PRE-REQUISITES OF THE COURSE

Course Title	Credit D	Prerequisite(s) of			
& Code	Lecture	Practical	Experiential Lab	the Course (if any)	
Statistics Practical-II	0	2	2	Basic Mathematics, Observation & Analytical Skills	

Computing all the practical manually and using Excel

- 1. Practical Based on Probability
- 2. Practical Based on Random variable
- 3. Practical Based on mathematical expectations
- 4. Practical Based on conditional and marginal distributions
- 5. Practical Based on generating function

Activities: (To be conducted in a group of two students)

- (1) Preparation of questionnaire
- (2) Applications of probabilities and random variables.
- (3) Case studies
- (4) Presentation
- (5) Report writing