St. Xavier's College (Autonomous), Ahmedabad Syllabus of Semester – IV of the following departments under Faculty of Science based on Under Graduate Curriculum Framework – 2023 (NEP) to be implemented from the Academic Year 2023-24.

FACULTY OF SCIENCE

DEPARTMENT OF STATISTICS

Course	Title	Content	Hours/Week	Credit
Minor-I	Mathematical	U-1: Probability	2 hrs	2
(Theory)	Statistics - I	U-2: Random variable and		
		mathematical expectation		
Minor-I	Statistics	Practical using manual calculation	4 hrs	2
(Lab)	Practical	and Excel		

Minor-I (Theory) Mathematical Statistics - I

CREDIT DISTRIBUTION, ELIGIBILITY AND PRE-REQUISITES OF THE COURSE

Course Title &	Credit D (Prerequisite(s) of		
Code	Lecture	Practical	Experiential Lab	any)
Mathematical Statistics - I	2	2	0	Basic Mathematics, Observation & Analytical Skills

Course Objectives:

- CO-1 Demonstrate the skill of identifying/designing the random experiments and their sample spaces. Apply ideas of probability theory, conditional probability, and Bayes' theorem in real-life situations.
- CO-2 Apply the idea of random variables and their expected values to study the behavior of random phenomena occurring in business, industry, and daily life activities.

Learning Outcomes: After completion of this course, the students will be able to

- (1) Distinguish between random and non-random experiments
- (2) Identify Random variable and their mathematical expectation
- (3) Calculate the probabilities of events
- (4) Enumerate Generating function and Function of Random variable

Unit: 1 Probability

- Random experiments, trials, discrete and continuous sample space
- Events and their types.
- Axiomatic approach to probability and its properties.
- Theorems on probability.(only statement)
- Definitions of equally likely cases, exhaustive cases, favorable cases.
- Classical and Empirical approach to probability.
- Conditional probability and its properties, Independence of two events, Pair wise and
- mutual independence for three events.
- Theorem on total probability.(only statement)
- Bayes' theorem and its applications.

Unit: 2 Random variable and mathematical expectation

(15Hrs)

- Random variable and its types (Discrete and Continuous).
- Probability mass function, probability density function and distribution function.
- Properties of distribution function and theorems.
- Mathematical Expectation and its basic properties.
- Theorems on Mathematical Expectation.
- Raw and Central Moments and their recurrence relation.

References:

- 1. Agresti, A. (2010): Analysis of Ordinal Categorical Data, 2nd Edition, Wiley.
- 2. Anderson T.W. and Jeremy D. Finn (1996). "The New Statistical Analysis of Data", Springer.
- Freedman, D., Pisani. R and Purves. R. (2014), "Statistics",4th Edition, W. W. Norton & Company.
- 4. Gupta, S.C. (2018), "Fundamental of Statistics", Himalaya Publishing House, 7th Edition.
- 5. Gupta S.C. and V.K. Kapoor (2020), "Fundamental of Mathematical Statistics", Sultan Chand and Co. 12th Edition.
- Goon A.M., Gupta M.K. and Dasgupta B. (2002): "Fundamentals of Statistics", Vol. I & II, 8th Edn. The World Press, Kolkata.
- 7. John E. Freund's "Mathematical Statistics with Applications", (7th Edn.), Pearson Education, Asia.
- 8. Mood, A.M. Graybill, F.A. and Boes, D.C. (2007): "Introduction to the Theory of Statistics", 3rd Edn., (Reprint), Tata McGraw-Hill Pub. Co. Ltd.

Minor-I (Lab) Mathematical Statistics - I

CREDIT DISTRIBUTION, ELIGIBILITY AND PRE-REQUISITES OF THE COURSE

Course Title	Credit D	Prerequisite(s) of			
& Code	Lecture	Practical	Experiential Lab	the Course (if any)	
Mathematical Statistics - I	0	2	2	Basic Mathematics, Observation & Analytical Skills	

Course Objectives:

- CO-1 Demonstrate the skill of identifying/designing the random experiments and their sample spaces. Apply ideas of probability theory, conditional probability, Bayes' theorem in real life situations.
- CO-2 Apply the idea of random variables and their expected values to study the behavior of random phenomenon occurring in business, industry and daily life activities.

Learning Outcomes: After completion of this course, the students will be able to

- (1) Identify Random variable and their mathematical expectation
- (2) Calculate the probabilities of events.
- (3) Calculate the marginal and conditional probabilities.

Computing all the practical manually and using Excel

- 1. Practical Based on Probability
- 2. Practical Based on Random variable
- 3. Practical Based on mathematical expectations
- 4. Practical Based on conditional and marginal distributions