ST. XAVIER'S COLLEGE (AUTONOMOUS)

AHMEDABAD

Chemistry Syllabus

for

Four-Year Undergraduate Programme

as per

National Education Policy (NEP-2020)

(Semester I)

(EFFECTIVE FROM JUNE 2023)

ST. XAVIER'S COLLEGE (Autonomous), AHMEDABAD Chemistry

Theory syllabus

PROGRAMME SPECIFIC OUTCOMES

A student completing this program will be able to

PSO1: Knowledge: Apply the principles of analytical, organic, inorganic and physical chemistry to solve basic chemical problems locally and globally

PSO2: Laboratory skills: Employ classical and modern laboratory techniques in the performance and documentation of experiments, suitable for a chemical industry or a chemistry graduate program.

PSO3: Environmental concern: Practice environmentally benign chemistry

PSO4: Employability/future prospects: Develop problem-solving skills and aptitude that are highly valuable to employers and entrepreneurship skills for self- employment

PSO5: Scientific communication: Have effective written and oral scientific communication skills, especially the ability to transmit complex technical information in a clear and concise manner.

St. Xavier's College (Autonomous), Ahmedabad

Syllabus of Semester – I of the following department under Faculty of Sciencebased on Under Graduate Curriculum Framework - 2023 to be implemented from the Academic Year 2024-25.

FACULTY OF SCIENCE

DEPARTMENT OF CHEMISTRY

Course	Title	Content	Hours/ week	Credit
DSC-1 (Theory)				
DSC-1 (Lab)				
Minor-1 (Theory)				
Minor-1 (Lab)				
SEC	Separation Methods in Chemistry	UNIT- 1: Physical methods of separation (Theory) UNIT-2: Practicals based on Theory	1+2 =3 hrs	2
MDC (Theory)				
MDC (Practical)				
AEC				
VAC				

Syllabus of Semester – I of the following departments under Faculty of Science based on Under Graduate Curriculum Framework - 2023 to be implemented from the Academic Year 2024-25.

FACULTY OF SCIENCE

DEPARTMENT OF CHEMISTRY

BSc. (Hons.) Chemistry Category – IV

Skill Enhancement Course: Separation Methods in Chemistry

CREDIT DISTRIBUTION, ELIGIBILITY AND PRE-REQUISITES OF THE COURSE

Course Title &	Credit Distribution of The Course			Elizibility Critorio	Prequisite(s) of the	
Code	Lecture	Tutorial	Practical / Practice	Englomity Criteria	Course (if any)	
Separation Methods in Chemistry (CH- 1650)	1	0	1 (2 hours	10 + 2 from a recognized board in any stream	Basics laboratory knowledge of Chemistry	

LEARNING OBJECTIVES (LO)

On completion of this course, the student will be able-

LO1: To introduce the concepts involved for the use of various distillation techniques

LO2: To introduce the concepts of solvent extraction and explain their applications in the chemical industry

LO3: To explain the various types of chromatographic techniques and their applications in the chemical laboratory

COURSE OUTCOME (CO)

On Completion of this course, the student has been able to-

CO1: Apply the principles of solvent extraction for separation of simple chemical mixtures

[15L]

CO2: Use the principles of distillation to separate a variety of liquid mixtures

CO3: Use the principles of chromatography to separate simple mixtures by TLC & Paper chromatography

UNIT-1 Physical methods of separation (Theory)

(a) Distillation and types of distillations, (1) Simple Distillation (2) Fractional Distillation (3) Steam Distillation

(b) Basics of Solvent Extraction, Principle of solvent extraction, Illustrations of Solvent Extraction.

(c) Classification of Chromatographic Techniques, (based on mobile phase and type of equilibria) ; (1) Paper Chromatography: Nature of Stationary Phase, Development of Chromatograph. (2) TLC: Nature of separation, technique of TLC, Process of development of plate, quantitative determination

Practical: Practicals based on Theory

- (1) Paper Chromatography: (Separation of amino acids)
- (2) Paper Chromatography: (Separation of group cations)
- (3) TLC of Ibuprofen
- (4) TLC of Aspirin
- (5) TLC of pure dyes
- (6) TLC of dye mixture
- (7) Distillation of two immiscible solvents
- (8) Demonstration of solvent extraction

Suggestive Reading:

- 1. Basics of analytical chemistry by S. M. Khopkar
- 2. Instrumental methods of chemical analysis by H Kaur
- 3. Instrumental methods of chemical analysis by G. Chatwal and S. Anand
- 4. Essentials of Physical chemistry by Bahl and Tuli

Suggested Online Links/Readings:

https://swayam.gov.in www.ncert.in https://books.google.co.in

Pedagogy:

- 1. Lecture method with teaching aids.
- 2. Audio-Visual Teaching mode with Projector Method.
- 3. Practical work & demonstration
- 4. Dialogue and context-based class.
- 5. Assignments, Learning seminar, Class Test etc.

MODE OF EVALUATION:

ASSESSMENT	MARKS				
INTERNAL					
Attendance	05				
Assignments	05				
Continuous Internal Assessment I and II	15				
TOTAL	25 marks				
EXTERNAL					
End Semester Exam	25 marks				

Students will prepare and present (in pairs) a Submission related to the topic of Assignment/ practical tasks on allotted topics. These Submission will be form of Activity/ Hand written notes etc. Points for evaluation: Presentation (20%) + Content (20%) + explanation (20%) + Creativity (20%) + Overall impression (20%).