Semester-II (Major Core-1)
 Subject Title: Calculus and Coordinate Geometry (Theory)
 Course Code: MT-2501
 No. of Credits: 04
 Learning Hours: 4 Hours/Week

Unit 1: (a) Successive Differentiation: Introduction to successive derivatives, $\mathrm{n}^{\text {th }}$ order derivatives of some standard functions, Leibnitz's theorem, Application of Leibnitz's theorem (b) Mean Value theorems: Rolle's mean value theorem, Lagrange's mean value theorem, Different forms of Lagrange's mean value theorem, Cauchy's mean value theorem, Applications of mean value theorems.

Unit 2: (a) Convergence and divergence of infinite series: Definition of series, Convergent and divergent series of real numbers, sum of infinite series, different test of convergence of infinite series-convergence of geometric series, comparison test, practical comparison test, D'Alembert's ratio test, Cauchy's root test, alternating series, absolutely convergent series, power series and radius of convergence.
(b) Expansions: Taylor's and Maclaurin's Theorems statements (without proof), expansions of some standard functions as infinite power series without validity of the expansions, Applications of Taylor and Maclaurin's theorem.

Unit 3: Sphere: Definition of a sphere in R^{3}, Cartesian equation of a sphere, general equation of a sphere, equation of a sphere with diametrical end points, intersection of a sphere with line/ plane/ sphere (no theory and only problems), equation of a tangent plane and normal line to a sphere. The condition for tangency of a plane and normality of a line to a sphere, plane of contact,orthogonal spheres.

Unit 4: (a) Different Coordinate systems: Polar coordinates in R^{2} and its relationships with Cartesian coordinates, polar equation of line/ circle/ conic and properties of conic. Spherical, cylindrical coordinates in R^{3} and its relationship with Cartesian coordinates in R^{3}.
(b)Cone \& Cylinder: Introduction to of cone and cylinder, Cone and Cylinder generated by a guiding curve, equation of enveloping cone and cylinder, right circular cone and right circular cylinder, Problems on cone and cylinder.

Reference Books:

1 Differential Caculus, Shanti Narayan, S. K. Mittal, S. Chand and Co. Publication.
2 Anton, Biven and Davis, Calculus, $10^{\text {th }}$ edition, Willey Publication.
3 Thomas, Calculus early transcendental, Addison-Wesley person publication.
4 Calculus - David V. Widder- PHI-second edition.
5 Calculus \& Analytic Geometry - G. B. Thomas \& R. L. Finney AddisonWesley pub. India.
6 Calculus with Early Transcendental functions - James Stewart, Indian Edition, Engage Learning India Pvt Ltd.
7 Advanced Calculus Volume I \&II - T. M. Apostol.
8 Anton, Howard, Stephen Davis, and IrlBivens. Calculus: a new horizon. New York: Wiley, 1999.
9 The calculus with analytic geometry, Louis Leithold, Harper \& Row, 5th edition, 1986
10 Analytical Solid Geometry- Shanti Narayan

11 Co-ordinate Geometry By : R.J.T. Bell.
12 Solid Geometry(three dimension) - H. K. Das ,S. C. Saxena and Raisinghania , S. Chand
13 Coordinate Geometry, Polar Coordinate approach, M M Tripathi, Alpha Science International

Semester-II (Major Core-2)
 Subject Title: Mathematics Practical-2 (Practical)
 Course Code: MT-2502L
 No. of Credits: 04
 Learning Hours: 8 Hours/Week

List of practical to be performed:

(1) Problems on limit and continuity of real valued functions of one variable using definition.
(2) Derivation of some standard derivative.
(3) Problems on extreme values of functions of one variables.
(4) Limit using L' Hospitals rule.
(5) Discuss concavity and point of inflexion of a curve in R^{2}.
(6) Asymptotes of curve in R^{2}.
(7) Problems on successive differentiation of some standard functions.
(8) Applications of Leibnitz's theorem.
(9) Convergence and divergence of infinite series-I.(Based on infinite sum, geometric series, practical comparison test, Alternating series, Absolutely convergent series)
(10) Convergence and divergence of infinite series-II. (practical ratio test and root test, convergence of power series and radius of convergence)
(11) Expansion of functions as infinite power series using Taylor's \& Maclaurin's theorem
(12) Cardon's Method
(13) Ferrari's Method
(14) Problems based on Principle of Mathematical Induction
(15) Problems on line in R^{3}
(16) Problems on plane in R^{3}.
(17) Problems on various coordinate systems in R^{2} and R^{3} (polar, cylindrical, spherical)
(18) Problems based on polar equation of line in R^{2}.
(19) Problems based on polar equation of circle in R^{2}.
(20) Problems on polar equations of conic in R^{2}.
(21) Problems on Sphere-I.
(22) Problems on Sphere-II.
(23) Problems on cone generated by base curve and enveloping cone.
(24) Problems on right circular cone.
(25) Problems on cylinder generated by base curve and enveloping cylinder.
(26) Problems on right circular cylinder.
(27) Introduction to conicoids in R^{3} (types of conicoids, its properties and diagram)
(28) Project on curves/surfaces.

Reference Books:

[^0]7 The calculus with analytic geometry, Louis Leithold, Harper \& Row, 5th edition, 1986
8 Analytical Solid Geometry- Shanti Narayan
9 Co-ordinate Geometry By : R.J.T. Bell.
10 Solid Geometry (three dimension) - H. K. Das ,S. C. Saxena and Raisinghania , S. Chand
11 Coordinate Geometry, Polar Coordinate approach, M M Tripathi, Alpha Science International
12 Higher algebra- Bernard an Child.

[^0]: 1 Differential Caculus, Shanti Narayan, S. K. Mittal, S. Chand and Co. Publication.
 2 Anton, Biven and Davis, Calculus, $10^{\text {th }}$ edition, Willey Publication.
 3 Calculus - David V. Widder- PHI-second edition.
 4 Calculus \& Analytic Geometry - G. B. Thomas \& R. L. Finney AddisonWesley pub. India.
 5 Advanced Calculus Volume I \&II - T. M. Apostol.
 6 Anton, Howard, Stephen Davis, and IrlBivens. Calculus: a new horizon. New York: Wiley, 1999.

