Semester: I (Minor)
Matrix Algebra (Theory and Practical)
Course Code: MT-1101
No. of Credits: $04(2+2)$
Learning Hours: 6 Hours/Week

Part-I: Theory (credits -2,2 hrs/week)

Unit 1: Introduction to matrices, different types of matrices, operations on matrices, theorems on matrices, matrix operations, symmetric and skew-symmetric matrices, Hermitian and skewHermitian matrices, orthogonal matrices, unitary matrices, normal matrices. Non-singular matrix, Matrix inversion using adjoint method, Linearly independent and dependent row(column) vectors of a of matrix, row rank, column rank and rank of a matrix, row echelon (RE) and row reduced echelon (RRE) form of a matrix, matrix inversion using row reduced echelon (RRE) form.

Unit 2: Eigen values and eigen vector of a square matrix. the characteristic equation of a matrix. Cayley-Hamilton theorem. Application of Caley Hamilton theorem to find the inverse of a matrix, theorems on consistency of a system of simultaneous linear equations, Application of matrices in solving a system of simultaneous linear equations, Cramer's rule.

Reference Books:

1. H. Anton, Elementary linear algebra with applications (8th Edition),John Wiley (1995).
2. Gilbert Strang, Linear Algebra and its Applications (English) $4^{\text {th }}$ edition, Academic press, Indian edition.
3. Matrix and Linear Algebra - K. B. Dutta, Prentice Hall.
4. A Textbook of Matrices - Shanti Narayan, P K Mittal, S. Chand Group.

Part-II: Practical (credits -2, 4 hrs/week)

List of practical to be performed:

(1) Matrix algebra
(2) RE and RRE form
(3) Rank of a matrix
(4) Linearly independent and dependent vectors.
(5) Inverse of square matrix
(6) Eigen values, eigen vectors
(7) Cayley Hamilton theorem and its applications
(8) Graphs of standard curves in Cartesian form
(9) Graphs of standard curves in parametric forms
(10) Graphs of standard curves in polar forms
(11) Problems on methods of integration
(12) Problems on Reduction formulae for definite integral
(13) Applications of integration to find area.
(14) Applications of integration to find volume.
(15) Applications of integration to find arc length.
(16) Applications of integration to find surface area.

Reference Books:

1. H. Anton, Elementary linear algebra with applications (8th Edition),John Wiley (1995).
2. Gilbert Strang, Linear Algebra and its Applications (English) $4^{\text {th }}$ edition, Academic press, Indian edition.
3. Matrix and Linear Algebra - K. B. Dutta, Prentice Hall.
4. A Textbook of Matrices - Shanti Narayan, P K Mittal, S. Chand Group.
5. Elementary Differential Equations, Rainville and Bedient, Macmillan Publication.
6. Differential Equations- D.A. Murray, Tata McGraw Hills.
7. Integral Calculus- Shantinaryan
