St. Xavier's College (Autonomous), Ahmedabad-09

Syllabus of Semester -<u>IV</u> of the following departments under Faculty of Science based on Under Graduate Curriculum Framework - 2023 to be implemented from the Academic Year 2025-26.

FACULTY OF SCIENCE

DEPARTMENT OF CHEMISTRY

BSc. (Hons.) Chemistry

Category – IV

Major Course - 1: Inorganic Chemistry

CREDIT DISTRIBUTION, ELIGIBILITY AND PRE-REQUISITES OF THE COURSE

Course Title &	Credit Distribution of The			Eligibility Criteria	Pre-requisite(s) of
Code	Course			the Course (if any)	
	Lecture	Tutorial	Practical / Practice		
CHMC441C Inorganic Chemistry	4	0	0	10 + 2 from a recognized board in any stream	

LEARNING OBJECTIVES (LO): The main objective of the course will be to build the basic			
foundation for studying chemistry. By the end of the paper, a student should be able to:			
LO-1	To learn wave -mechanics and terms related to wave -mechanics the		
	knowledge from this part can help to build a career in Quantum chemistry or		
	specialization at higher study.		
LO-2	To learn various aspect of coordination chemistry in detail to calculate CFSE		
	and stability of complex compounds can help for the research		
	specialization at higher study.		

LO-3	To Understand the concept of molecular orbitals, Construct and interpret
	molecular orbital diagrams and Use of MO theory to explain chemical
	bonding in inorganic chemistry.
LO-4	To learn organometallic chemistry and applications of catalysis is important
	for higher study in the subject and helpful for Industrial chemistry purpose.
Course OUTCO	OMES (CO)
On Completi	on of this course, the student will be able to
CO-1	Apply the postulates of quantum mechanics to solve the Schrodinger wave
	equation for simple chemical systems
CO-2	Use the bonding theories like CFT and MOT to understand the chemical
	properties and structure of simple molecules, co-ordination compounds and
	organometallic compounds
CO-3	The objective of this course segment is to equip students with a
	comprehensive understanding of Molecular Orbital Theory as a quantum
	mechanical model of chemical bonding.
CO-4	Use basic knowledge of the catalysis help for the basic research activity in
	future.

Unit:1 Wave Mechanics (15L)

Α

Difference between Classical mechanics and modern mechanics in wave mechanics, Basic postulates of quantum mechanics (Postulates 1,2,3 and 4); Types of Operators, Setting up of operators: Quantum mechanical operator for momentum, Quantum mechanical operator for total Energy (Hamiltonian Operator); Energy equation derivation for Particle in a box (One dimensional); Zero potential energy; Characteristics of the wave functions; Energy equation derivation for Electron confined in a ring.

Unit 2 Coordination Compounds (15L)

Crystal Field Theory, Orientation of d-orbitals and Crystal Field Splitting of Energy levels; Crystal Field Splitting in Octahedral complexes; Crystal Field Stabilization Energy (CFSE); Crystal Field Splitting in Tetrahedral Complexes; Crystal Field Splitting in Tetragonal and square Planar Complexes; Magnetic Properties of Metal Complexes and Crystal Field Theory; Factors influences the magnitude of Crystal Field Splitting; Color of Transition Metal Complexes; Crystal Field Effects on Ionic Radii; Crystal Field Effects on Lattice Energies; Jahn- Teller Effect.

В	Coordination Chemistry: Lability, inertness, Stability, Instability, reaction, kinetics and
	mechanism, Trans effect and Influence
Unit 3 A	dvanced Chemical Bonding -Molecular Orbital Theory: (15L)
	Introduction of AO's, MO's, Molecular orbital Theory; LCAO; Energy Level Diagram
	for Molecular Orbitals; Mixing of Orbitals; Filling up of Molecular Orbitals; MO
	diagram of Heteronuclear Diatomic molecules (HF, HCl); Molecular orbitals of
	Polyatomic Species (BeH ₂ , CO ₂ ,NH ₃)(Excluding Walsh diagram); Molecular orbital
	Theory of Octahedral Sigma donation[Co (NH ₃) ₆] ³⁺ and; Sigma & Pi-donation [CoF ₆] ³⁻
	, Pi- acceptance [Fe (CN) $_6$] 4 -, Tetrahedral: Sigma & Pi-donation [NiCl $_4$] 2 -, Square
	planar: Sigma & Pi-donation, Pi- acceptance [PtCl ₄] ²⁻
Unit 4 Or	ganometallic Chemistry and Catalysis (15L)
А	Organometallic Chemistry: Introduction of organometallic, classification, types of
	bond, methods for electron counting, electron count preference.
	Ligands: Carbon monoxide, Phosphines, hydrides and dihydride complexes, n'-Alkyl,
	alkenyl, alkynyl, and Aryl ligands.
В	Catalysis: General principle, The language of catalysis, hydrogenation of alkene.
	Heterogeneous catalysis: surfaces four interactions with adsorbates.

Suggestive Reading:

- "Advanced Inorganic Chemistry", by Gurdeep Raj, Goel Publishing House, Meerut, Volume

 –I, 24th Revised Edition, 1998
- 2. "Modern Inorganic Chemistry', by R.D. Madan, S. Chand & Co. Ltd., New Delhi, 2nd Edition, 2006.
- 3. "Concise Inorganic Chemistry", by J.D. Lee, Wiley India Publication, 5th Edition, 1996, Reprint 2011.
- 4. "Selected Topics in Inorganic Chemistry", by W.V. Malik, G.D. Tuli, R.D. Madan, S.Chand & Co. Ltd., New Delhi, 7th Edition, 2007
- 5. "Introductory Quantum Chemistry", by A.K. Chandra, Tata- McGraw Hill Pub. Co. Ltd., New Delhi, 4th Edition.
- 6. "Principles of Inorganic Chemistry", by Puri, Sharma, Kalia, Milestone Publishers & Distributors, New Delhi, 3rd Edition, 2006.
- 7. "Quantum chemistry", by R.K.Prasad, New Age International (P) Ltd., Publishers, 4th Edition, 2010.
- 8. "Shriver & Atkins' Inorganic Chemistry", Peter Atkins, Tina Overton, Jonathan Rourke, Mark Weller, Fraser Armstrong, Oxford University Press, 2011.
- 9. "Inorganic Chemistry", by Catherine E Housecroft and Alan G Sharpoe, 2nd edn.
- 10. Symmetry and Spectroscopy of Molecules by K. Veera Reddy 2 nd a edition New Age International publisher.

St. Xavier's College (Autonomous), Ahmedabad-09

Syllabus of Semester -<u>IV</u> of the following departments under Faculty of Science based on Under Graduate Curriculum Framework - 2023 to be implemented from the Academic Year 2025-26.

FACULTY OF SCIENCE

DEPARTMENT OF CHEMISTRY

BSc. (Hons.) Chemistry

Category – IV

Major Course - 2: Analytical Chemistry (Theory)

CREDIT DISTRIBUTION, ELIGIBILITY AND PRE-REQUISITES OF THE COURSE

Course Title & Code	Credit Distribution of The Course			Eligibility Criteria	Pre-requisite(s) of the Course (if any)
	Lecture	Tutorial	Practical / Practice	_	
CHMC442C Analytical Chemistry (Theory)	4	0	0	10 + 2 from a recognized board in any stream	

LEARN	LEARNING OBJECTIVES (LO): The main objective of the course will be to build the basic			
foundation for studying chemistry. By the end of the paper, a student should be able to:				
LO-1	To learn basic concepts of acid-base titration and Precipitation Titration which			
	develop theoretical skill to the students for further lab practices.			
LO-2	To explain the importance of EDTA in complexometric titrations and effect of pH on			
	it. To enable the students to understand the mechanism of indicator and to determine			
	hardness of water.			

LO-3	To learn basic concepts of gravimetric analysis which enhance theoretical knowledge
	for the practical and in the field of research area.
LO-4	To explain the characteristics and applications of various organic indicators.
Course (OUTCOMES (CO)
On C	ompletion of this course, the student will be able to
CO-1	Employ the fundamentals of quantitative analysis to interpret the theory and locate
	the end point for various acid-base systems, determine the theoretical construction of
	the graph and understand its actual nature.
CO-2	Apply the basics of classical analysis methods to comprehend the various aspects of
	gravimetric analysis.
CO-3	To employ the method of solvent extraction and remember its use in single and batch
	process, extraction of metals and also determine the separation efficiency.
CO-4	Remember the theory and uses of 8-Hydroxy Quinoline, Cupferron, DMG and N-
	benzoyl-N-phenylhydroxylamine as precipitants.

A Theory of acid-base titration: Theory of acid-base titration, Ways of locating the end point of an acid-base titration, Titration of strong acid with strong base, Titration of weak base with strong acid, Titration of weak base with weak acid, Factors determining the exact form of a pH curve. B Precipitation Titration: Titration curves, Feasibility, Indicators, Mohr, Volhard and Fajans' Methods, Factors affecting solubility Unit 2 REDOX TITRATIONS (15L) A Theory of redox titration, study of redox titration by electrochemical potential method and its derivation, Ways of locating the end point for redox titration by (i) visual (self-indication, starch and redox indicator) (ii) electro potential method. B Titration involving lodine: iodimetry and iodometry, Standardization of sodium thiosulphate by K ₂ Cr ₂ O ₇ , Titration with other oxidizing agents: Potassium
weak acid with strong base, Titration of weak base with strong acid, Titration of weak base with weak acid, Factors determining the exact form of a pH curve. B Precipitation Titration: Titration curves, Feasibility, Indicators, Mohr, Volhard and Fajans' Methods, Factors affecting solubility Unit 2 REDOX TITRATIONS (15L) A Theory of redox titration, study of redox titration by electrochemical potential method and its derivation, Ways of locating the end point for redox titration by (i) visual (self-indication, starch and redox indicator) (ii) electro potential method. B Titration involving lodine: iodimetry and iodometry, Standardization of sodium
base with weak acid, Factors determining the exact form of a pH curve. B Precipitation Titration: Titration curves, Feasibility, Indicators, Mohr, Volhard and Fajans' Methods, Factors affecting solubility Unit 2 REDOX TITRATIONS (15L) A Theory of redox titration, study of redox titration by electrochemical potential method and its derivation, Ways of locating the end point for redox titration by (i) visual (self-indication, starch and redox indicator) (ii) electro potential method. B Titration involving lodine: iodimetry and iodometry, Standardization of sodium
B Precipitation Titration: Titration curves, Feasibility, Indicators, Mohr, Volhard and Fajans' Methods, Factors affecting solubility Unit 2 REDOX TITRATIONS (15L) A Theory of redox titration, study of redox titration by electrochemical potential method and its derivation, Ways of locating the end point for redox titration by (i) visual (self-indication, starch and redox indicator) (ii) electro potential method. B Titration involving lodine: iodimetry and iodometry, Standardization of sodium
Unit 2 REDOX TITRATIONS (15L) A Theory of redox titration, study of redox titration by electrochemical potential method and its derivation, Ways of locating the end point for redox titration by (i) visual (self-indication, starch and redox indicator) (ii) electro potential method. B Titration involving lodine: iodimetry and iodometry, Standardization of sodium
Unit 2 REDOX TITRATIONS (15L) A Theory of redox titration, study of redox titration by electrochemical potential method and its derivation, Ways of locating the end point for redox titration by (i) visual (self-indication, starch and redox indicator) (ii) electro potential method. B Titration involving lodine: iodimetry and iodometry, Standardization of sodium
A Theory of redox titration, study of redox titration by electrochemical potential method and its derivation, Ways of locating the end point for redox titration by (i) visual (self-indication, starch and redox indicator) (ii) electro potential method. B Titration involving lodine: iodimetry and iodometry, Standardization of sodium
method and its derivation, Ways of locating the end point for redox titration by (i) visual (self-indication, starch and redox indicator) (ii) electro potential method. B Titration involving lodine: iodimetry and iodometry, Standardization of sodium
method and its derivation, Ways of locating the end point for redox titration by (i) visual (self-indication, starch and redox indicator) (ii) electro potential method. B Titration involving lodine: iodimetry and iodometry, Standardization of sodium
(i) visual (self-indication, starch and redox indicator) (ii) electro potential method. B Titration involving lodine: iodimetry and iodometry, Standardization of sodium
B Titration involving lodine: iodimetry and iodometry, Standardization of sodium
Titration involving lodine: lodimetry and lodometry, Standardization of sodium
permanganate, potassium dichromate, cerium Titration with reducing agents:
Sodium thiosulfate, Fe(II).
Unit 3 GRAVIMETRIC ANALYSIS AND ORGANIC REAGENTS(15L)

А	Gravimetric Analysis: (8L)
	Introduction, Precipitation, Digestion, Filtration, washing of the precipitate, Drying
	and/or incineration of the precipitate, Weighing, Gravimetric factors, Specific and
	selective precipitation, Masking or sequestering agent, Problems involved in
	precipitation gravimetry.
В	Organic reagents used in quantitative Analysis: (7L)
	Organic precipitants, Separation methods with 8-Hydroxy Quinoline, Cupferron,
	DMG and N-benzoyl-N- phenylhydroxylamine.
Unit 4 SO	LVENT EXTRACTION AND COMPLEXOMETRIC TITRATION (15L)
А	Solvent Extraction Separation: Principles of solvent extraction, choice of solvent,
	distribution coefficient, distribution ratio, percentage, (%) extraction. The extraction
	process, solvent extraction of metals, selective extraction and separation efficiency.
В	Complexometric Titration: Theory of complexometric titration involving EDTA, Study
	of EDTA complex formation taking disodium salt of EDTA and effect of pH, Ways of
	locating the end point, Estimation of calcium and magnesium by complexometric
	titration by EDTA.

Suggestive reading: CH 4502: Analytical Chemistry (Theory)

- 1. "Analytical Chemistry", by Dhruba Charan Dash, PHI Learning Pvt. Ltd., New Delhi, 2011.
- 2. "Quantitative Analysis", by R.A.Day, A.L.Underwood, Prentice-Hall of India Pvt.Ltd., New Delhi, 2004. (Sixth edition)
- 3. Analytical Chemistry", by Gary D. Christian, John Wiely & Sons, INC, New York, 1994. (Fifth edition)
- 4. "Analytical Chemistry An Introduction", by Douglas A. Skoog, Donald M. West, F.James Holler, Saunders College Publishing, Harcourt Brace College Publishers, Philadelphia, 1994. 6th edition.
- "A Textbook of Analytical Chemistry", by Y.Anjaneyulu, K.Chandrasekhar, Valli Manickam, Pharma Book Syndicate, Hyderabad, India, 2006.
- 6. "Instrumental Methods of analysis" by H.H. Willard, L.L. Mirrit, J.A. Dean, CBS Publications.
- 7. "Solvent extraction in Analytical Chemistry" by G.H. Morrison, F. Frieiser, John Wiley & Sons, NY
- 8. "Quantitative Chemical Analysis" by Daniel C. Harris, W H Freeman, New York.
- 9. "Ion exchange and solvent extraction of metal compounds' by Y. Macros, A.S.Kertes, Wiley,Interscience