ST. XAVIER'S COLLEGE (AUTONOMOUS), AHMEDABAD-9 FACULTY OF SCIENCE

DEPARTMENT OF PHYSICS & ELECTRONICS

SEMESTER - V

SYLLABUS
OF
BSc PHYSICS (HONOURS)

BASED ON UNDERGRADUATE CURRICULUM FRAMEWORK (NEP – 2020)

(Effective from Academic Year 2023)

Curriculum Framework for Semester – V

Course	Title	Content C1			
DSC-8 (Theory)	PHMC551C Mathematical Methods and Quantum Mechanics	U1	Partial Differential Equations		
		U2	2 nd Order Ordinary Differential Equations		
		U3	Foundation of Quantum Mechanics	4	
		U4	3D problem in QM		
	PHMC552C Electrodynamics and Nuclear	U1	Specia Techniques in Electrodynamics		
DSC-9		U2	Electromagnetic waves	4	
(Theory)		U3	Nuclear Emissions	4	
	Physics	U4	Nuclear Structure		
DSC-10	PHMC553CL Physics and Experiential Lab- V	14 Physics Experiments		4	
(Laboratory)		Experiential Lab: Hands on experiment.			
	PHMN551C Digital Circuit (Hybrid Mode SWAYAM)	U1	Combinational Circuit		
Minor-1		U2	Sequential Circuit	4	
(Sub. Specific)		U3	Microprocessor 8085		
		U4	Laboratory		
Min an 2	ELMN551C Basic Electronics-IV	U1	Network Analysis by Laplace Transformation	2	
Minor-2 (Theory + Lab)		U2	Multivibrators, Clock and Timer		
		U3 U4	9 experiments and 3 Projects	2	
SEC	PHSE551C	U1	Basics of Statistical Methods in Physics	2	
	Statistical Methods in Physics	U2	Lab: Statistical Data Analysis and Simulation		
Total Credits				22	

^{*} DSC: Discipline Specific Core

St. Xavier's College (Autonomous), Ahmedabad

Syllabus of Semester – 5 to be implemented from the Academic Year 2025-26.

FACULTY OF SCIENCE

DEPARTMENT OF PHYSICS & ELECTRONICS

Minor Course: Digital Circuits

Course		Credit Distribution			NAI	Mode Of	Prerequisite
Title &	Cr	Lectures	Tutorials	Practical	Marks	Delivery	(s)
Code							
PHMN551C	3+1	3		1	75 (Theory)	Hybrid (Swayam +	Physics Major
Digital Circuits		30 hrs	15 hrs	30 hrs	25 (Practical)	Offline Lectures / Tutorials)	students can take this course

LO1	Digital circuits are part of any electronic design today. This also happens to be one of the core subjects for the undergraduate students in Electronics, Electrical, Physics and Computer Engineering.
LO2	The proposed course on digital circuits will cover all the fundamental concepts in digital design.
LO3	The course will start with the representations of numbers – different number systems and conversion between them, representation of integer and real numbers etc.
LO4	This will be followed by combinational and sequential circuit design techniques.
LO5	Microprocessor 8085 will be discussed as a complete digital system example.
LO6	Finally, the student shall get a feel of the course by doing the practical's related to the theory which they shall be studying.

Learning Objectives:

Course Outcomes

CO1	Exposure to the Digital circuits and how it is different from the analog world
CO2	They would be able to design combinational circuits and conduct practical exercise.
CO3	They shall then move on to designing and testing sequential circuits.
CO4	Finally, they shall move to the 8085 Microprocessor system and do programing related to the instruction set of the 8085 Microprocessor.

Theory (45 hours)

Unit 1: Introduction Introduction to Number System, Boolean Algebra

Unit 2: Combinational Circuits

Combinational function minimization – K Map, Boolean identities Logic Gates, Arithmetic,

circuits, Code converters, Multiplexers, Decoders, PLA

Unit 3: Sequential Circuits

Latches and Flip-flops, Counters, Shift Registers, Finite State machines

Unit 4: Microprocessor 8085

Laboratory Experiments: (30 hours)

Lab (30 hours)

01	Half/Full Adder/Subtractor
02	MUX/DEMUX.
03	Study of shift registers and Johnson counter using IC 7495
04	Flip Flops
05	Study of 8:1 multiplexer (74151) and study of 1:4 and 1:8 demultiplexer using IC 74155
06	study of 3:8 decoder and design of combinational circuit
07	Design of logic circuit using Karnaugh map (SOP method)
08	Design of combinational logic circuit using multiplexer IC.
09	Binary counter and Decade counter
10	Microprocessor Programming

List of Experiments:

SWAYAM Link: https://onlinecourses.nptel.ac.in/noc24 ee147/preview

Reference Books:

1. Digital Circuits by Morris & Manno,

2. Digital Circuits by Malvino and Leech