ST. XAVIER'S COLLEGE (AUTONOMOUS), AHMEDABAD-9 FACULTY OF SCIENCE

DEPARTMENT OF PHYSICS & ELECTRONICS

SEMESTER – III

SYLLABUS
OF
BSc PHYSICS (HONOURS)

BASED ON UNDERGRADUATE CURRICULUM FRAMEWORK (NEP-2020)

(Effective from Academic Year 2023)

Curriculum Framework for Semester – III

Course	Title	Con	tent	Credit	
DSC-5 (Theory)	PHMC331C	U1 Interatomic Forces and Bonding Force in Solids, The crystalline State.			
	Solid State Physics and Classical Mechanics	U2 Lattice Vibrations, Thermal properties			
		U3	Lagrangian Formulation, Motion of a rigid body	4	
		U4	Classical Mechanics, Moving Coordinate System		
		U1	Diffraction and Resolving power		
DSC-6 (Theory)		U2	Polarization		
	PHMC332C Optics and Instrumentations	U3	Lasers	4	
	and instrumentations	U4	Instruments		
DSC-7		14 P	14 Physics Experiments		
(Laboratory)	and Experiential Lab-III	Experiential Lab: Hands on experiment.			
SEC	PHSE331C	U1	Introduction to Python Programming.	2	
	Physics Analysis using Python	U2	Python Laboratory		
MDC		U1	Intr. to Astronomy and Observations in Astronomy		
	MDC206C Astronomy for Beginners	U2	Astronomy		
		U3			
		U4	Field Trip/Project/Stargazing		
AEC	Ability Enhancement Course	(To be offered by the concerned subject Department)			
VAC	Value Added Course	(To	be chosen from a basket of courses)	2	
Total Credits				22	

St. Xavier's College (Autonomous), Ahmedabad

Syllabus of Semester-III to be implemented from the Academic Year 2025-26.

DEPARTMENT OF PHYSICS & ELECTRONICS

SEC Course: Physics Analysis using Python							
Course Code & Title	Cr	Lecture hrs	Tutorial hrs	Activity/Case study analysis	Eligibility Criteria	Prerequisite(s) of the Course (if any)	
PHSE331C Physics Analysis using Python	4	12 × 4	3 × 4		10 + 2 from a recognized board	Science Stream Math-Group	

Learning Objectives:

LO1	Develop Python programs using conditionals, loops, data structures (lists, tuples, dictionaries) and implement file and error handling mechanisms.	
LO2	Use NumPy for efficient numerical operations and create data visualizations using Matplotlib, including line graphs, scatter plots, and histograms	

Course Outcomes:

CO1	Demonstrate proficiency in core Python programming concepts including variables, data types, control structures, functions, and modules for solving basic computational problems.
CO2	Apply Python libraries such as NumPy and Matplotlib for numerical computation and data visualization in scientific applications.

Unit 1: Python

Credit of Course: 1 Cr Lecture 12 Hrs Tutorial 3Hrs

- [A] Introduction to Python Programming. Variables, Data Types, and Operators. Control Structures: Conditionals. Control Structures: Loops. Data Structures: Lists and Tuples. Data Structures: Dictionaries and Sets. Functions and Modules. File Handling. Error Handling and Exception Handling. Introduction to NumPy. Introduction to Matplotlib. Introduction to SciPy.

 Text Book:
 - [A] Learn Python 3 the Hard Way Zed A. Shaw, Exercises 0 10, 16 21, 29 33, 38 40
 - [B] Numerical Python: Scientific Computing and Data Science Applications with Numpy, SciPy and Matplotlib Robert Johansson (2nd Edition), Chapters 2, 4

Unit 2: Laboratory Component

Credit of Course: 1 Cr Lecture 12 Hrs Tutorial 3Hrs

- [A] Setting Up Python Environment: Installing Python and required libraries
- [B] Python Basics and Simple Programs: Writing simple Python programs to perform arithmetic operations, string manipulations, and basic logic.
- [C] Conditional Statements and Loops: Implementing various conditional statements and loop structures in Python
- [D] Working with Lists, Tuples, and Dictionaries: Hands-on exercises on list manipulations, tuple operations, and dictionary operations
- [E] Functions and Modules: Writing and calling functions, exploring the concept of modules and packages
- [F] File Handling: Reading from and writing to files, handling different file formats
- [G] Error Handling: Identifying and handling errors in Python programs using try-except blocks
- **[H]** Introduction to NumPy: Creating NumPy arrays, performing basic array operations and manipulations; Exploring advanced NumPy functionalities like array manipulation, broadcasting and universal functions
- [I] Data Visualization with Matplotlib: Creating various types of plots (line plots, scatter plots, histograms) using Matplotlib.

Text Book:

- [A] Learn Python 3 the Hard Way Zed A. Shaw, Exercises 0 10, 16 21, 29 33, 38 40
- [B] Numerical Python: Scientific Computing and Data Science Applications with Numpy, SciPy and Matplotlib Robert Johansson (2nd Edition), Chapters 1-5, 6-7