ST. XAVIER'S COLLEGE (AUTONOMOUS), AHMEDABAD-9 FACULTY OF SCIENCE

DEPARTMENT OF PHYSICS & ELECTRONICS

SEMESTER - V

SYLLABUS
OF
BSc PHYSICS (HONOURS)

BASED ON UNDERGRADUATE CURRICULUM FRAMEWORK (NEP – 2020)

(Effective from Academic Year 2023)

Curriculum Framework for Semester – V

Course	Title	Content			
DSC-8 (Theory)	PHMC–551C Mathematical Methods and Quantum Mechanics	U1	Partial Differential Equations		
		U2	2 nd Order Ordinary Differential Equations		
		U3	Foundation of Quantum Mechanics	4	
		U4	3D problem in QM		
DSC-9 (Theory)	PHMC–552C Electrodynamics and Nuclear Physics	U1	Specia Techniques in Electrodynamics	4	
		U2	Electromagnetic waves		
		U3	Nuclear Emissions		
		U4	Nuclear Structure		
DSC-10 (Laboratory)	PHMC–553CL Physics and Experiential Lab- V	14 I	14 Physics Experiments		
		Experiential Lab: Hands on experiment.			
Minor-1 (Sub. Specific)	PHMN–551C Digital Circuit (Hybrid Mode SWAYAM)	U1	Combinational Circuit		
		U2	Sequential Circuit	4	
		U3	Microprocessor 8085	4	
		U4	Laboratory		
Minor-2 (Theory + Lab)	ELMN551C Basic Electronics-IV	U1	Network Analysis by Laplace Transformation	2	
		U2	Multivibrators, Clock and Timer		
		U3 U4	9 experiments and 3 Projects	2	
SEC	PHSE551C Statistical Methods in Physics	U1	Basics of Statistical Methods in Physics		
		U2	Lab: Statistical Data Analysis and Simulation	2	
Total Credits				22	

^{*} DSC: Discipline Specific Core

St. Xavier's College (Autonomous), Ahmedabad

Syllabus of Semester-V to be implemented from the Academic Year 2025-26.

DEPARTMENT OF PHYSICS & ELECTRONICS

Skill Enhancement Course: Statistical Methods in

C C 1 0	Credit Distribution of The Course				D :://	
Course Code & Title	Cr	Lecture	Practical	Eligibility Criteria	Prerequisite(s) of the Course (if any)	
Title		hrs	hrs		the Course (II any)	
PHSE551C Statistical Methods in Physics	1+1	15x1	30x1	10 + 2 from a recognized board	Science Stream Math-Group	

Learning Objectives:

LO1	Understand fundamental statistical methods used in physics.		
LO2	Apply Python for statistical analysis and data visualization.		
LO3	Perform error analysis, curve fitting, and Monte Carlo simulations.		
LO4	Analyze real-world physics datasets using statistical techniques.		

Course Outcomes:

CO1	Apply statistical tools such as mean, variance, and probability distributions to analyze and interpret physics data.
CO2	Implement Python-based solutions for error analysis, data fitting, and statistical modeling using libraries like NumPy, SciPy, and Matplotlib.
CO3	Conduct hypothesis testing using methods like chi-square and t-tests to evaluate experimental results and assess their significance.
CO4	Design and simulate simple physical systems using random number generation and Monte Carlo techniques to explore statistical behavior in physical processes.

Unit - 1

Introduction to Statistics in Physics: Importance of statistics in physical sciences;

Descriptive statistics: Mean, median, mode, variance, standard deviation

Probability Distributions: Binomial distribution; Poisson distribution; Gaussian (Normal) distribution

Error Analysis and Data Fitting: Types of errors: Systematic vs Random; Error propagation formulas; Least squares fitting and simple linear regression

Hypothesis Testing: Confidence intervals; Significance testing: p-values; Chi-square test for goodness-of-fit; t-tests for comparing means

Randomness and Monte Carlo Simulations: Random number generation in physics; Simulations of simple systems (e.g., radioactive decay, coin toss); Basic introduction to Monte Carlo techniques

Text Book:

- 1. R.J. Barlow *Statistics* (Chapters 1, 2, 3, 6)
- 2. Bevington & Robinson Data Reduction and Error Analysis (Chapters 1, 2, 6, 11)
- 3. Allen B. Downey *Think Stats* (Chapters 1, 2, 4, 5, 7–10)

Reference Books:

- 1. Glen Cowan Statistical Data Analysis
- 2. Sivia & Skilling Data Analysis: A Bayesian Tutorial

Unit – 2: Laboratory Exercises:

Descriptive statistics and visualization of datasets

Generating and analyzing probability distributions. Python implementation: numpy, scipy.stats, visualization using matplotlib and seaborn

Simulating measurement errors and performing uncertainty propagation

Least squares fitting and regression on experimental data. Python-based curve fitting using scipy.optimize.curve_fit

Hypothesis testing using real-world physics datasets (Chi-square test, t-test). Python tools for hypothesis testing: scipy.stats

Monte Carlo simulation: Estimation of π using random numbers. Python implementation: numpy.random

Simulation of simple physical processes (e.g., radioactive decay, random walks)

Python Tools Used: NumPy; SciPy; Matplotlib; Seaborn